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Abstract:- The technique for formatting the input shaping, based on the pole-zero cancellation is used to reduce 
the residual vibration in a flexible structure. The technique is developed in the discrete time domain and was 
extended for a step motor actuator where the motor drive commands were modified to act as passive control. 
The mathematical model is represented by a central body, wings of rigid solar panels and a flexible beam as 
shown in Figure 1. The methodology of the system analyze was developed as a multi-body problem in 
Cartesian plane. The external torque which acts on the structure was generated by stepper motor actuators, 
whose step numbers were variable in order to cause an effect on the structure and minimize the linear structural 
response on the flexible beam Two passive control strategies to minimize the vibration of the flexible beam 
first vibration mode, were investigated. The first strategy allocates a zero on the pole of the system and the 
second consideres uncertainties on the system parameters and two zeros were placed near the pole. 
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1 Introduction 
Artificial satellites in operation need to develop 
certain functions precisely as attitude and orbit 
control, telecommunications, among other 
maneuvers, such as pointing cameras are necessary 
to obtain high-resolution images. To meet the 
requirements of the mission and well-functioning of 
the subsystems, the performance of a satellite 
depends on the power source (battery) which feeds 
the equipment on board. Therefore, the solar panels 
need maximize the energy capture, being their 
pointing towards the Sun regularly adjusted. The 
wing panels incorporate an electromechanical 
mechanism that transmits electrical signals and 
power into the satellite. This mechanism is known 
in the literature as BAPTA (Bearing and Power 
Transfer Assembly) or SADA (Solar Array Drive 
Assembly). In this kind of mechanism is one of its 
elements is a stepper motor which has the function 
of transmitting the rotational movement to the shaft 
of the wing panels. The stepper motor drive, can 
cause unwanted vibrations in the payload, which 
must be minimized during the performance of 
operational tasks, sensitive to vibrations. These 
vibrations can be minimized by controlling the input 
shaping that governs the number of steps of the 
motor [1] There are many input shaping methods 

using time domain or the frequency domain , has 
been developed . Singer [14] proposed a method of 
sequential pulses for vibration control in the 
continuous time domain, which was later extended 
by Hyde and Seering [15] to include the elimination 
of multiple vibration modes . Murphy and Watanabe 
[16] and Singh and Vadali [17] showed that work 
with the input shaping technique in the Laplace s-
plane or z-plane of the discrete time , instead of 
working in the continuous time domain, provides 
significant gains in mathematical simplicity , 
especially when a systems with multiple unwanted 
modes of vibration. Tuttle and Seering [1] proposed 
a formulation for designing a technique based on the 
input shaping technique of Singer, but using the 
pole-zero cancellation in discrete-time domain , 
suggested by Smith [18] . In this work , is used the 
technique of placing zeros in the development of an 
input shaping algorithm of the entry, which must 
meet the requirements of the dynamic vibration 
system , obeying the operational capability of a 
stepper motor actuator type . Therefore, it is an 
extension of the work Tutlle Seering and the 
dynamics of the stepper motor. The pulse-width 
modulation driver is an excellent driver which offers 
good current build-up with low loss [12].  
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2 Determination of the vibration 
target modes 
The study of vibrations is related to the analysis of 
the oscillatory behavior of an elastic body and the 
forces and / or momentum associated. The 
vibrations can be classified as: free vibrations and 
forced vibrations . When a system oscillates due to 
the action of a non-zero initial condition ( position 
and / or velocity ) and no force and / or external 
momentum acting on the system , it says that the 
system oscillates freely. In this case, depending on 
which mode the system is more excited , 
characterized by the nature of the material, the 
distribution of mass and stiffness. The forced 
vibration arises due to the action of forces and / or 
external momentum when the natural frequency of 
external excitation coincides with one of natural 
frequencies of the system. The kinetic energy of the 
system increases until it reaches a resonance state. 
Therefore, the calculation of natural frequencies is 
of fundamental importance when it comes to 
vibration control of flexible structures . In this paper 
for the design of vibration structural control induced 
by a stepper motor, an experimental model was 
constructed of aluminum alloy . The aluminum alloy 
is the most widely used material in the construction 
of satellites, due its relatively lightweight, sturdy, 
easy to machine and low cost [7,13]. The project of 
a structure involves the calculation of its natural 
frequencies. Complex structures are simulated by a 
numerical model, as the one created with finite 
elements, to obtain more accurate values of the 
natural frequencies. To determine the vibration 
modes that the input torque generated by the stepper 
motor with the payload (flexible beam), more 
strongly a frequency response analysis is performed. 
At the free end of the flexible beam, an 
accelerometer is installed to collect the acceleration 
data generated due to drive the stepper motor when 
performing a maneuver of angular displacement. 
The acceleration data are stored in a digital 
computer to be converted into displacement data for 
analysis and comparison with theoretical data. Table 
1 summarizes the dimensions of the mass, geometry 
and corresponding moments of inertia of the 
experimental model. 
 
 
 
 
 
 

 

 
Table 1: Dimensions, mass, geometry and 

momentum of inertia. 

 Dimension 
(m) 

Mass 
(kg) 

Ixx 
Nms2 

Ixx 
Nms2 

Ixx 
Nms2 

CS .31x.31x.31 4.219 .086 .055 .094 

SAW .33x.6x.01 .708 .030 .037 3.06e-4 

FB .015x.0005x1.2 1.6e-4 1.9e-5 2.5e-8 1.9e-5 

SB = Satellite Body, SAW=Solar Array Wing 
FB=Flexible Beam 
 
Lagrangian formalism is used to obtain the 
governing equations of motion. The flexible beam is 
modeled as a Euler-Bernoulli cantilever beam and 
using the linear theory of bending. Only the first 
bending mode is considered and the behavior of the 
beam is observed during and after the actuator drive 
stepper motor. Two control strategies are 
investigated. The rate of steps per second in both 
cases is fifty paces per second. 
 
3 Frequency Response Function 
The frequency response function (FRF) defines 
quantitatively the relationship between external 
excitation input and a position that we want to 
evaluate, as the output position in a structure, for a 
range of frequencies. The input is a SADA node 
torque in the Z-direction and the output is a 
translation in the X-direction of the node located at 
the free end of the flexible beam. For a modal 
system with two degrees of freedom, the Frequency 
Response Function [2], is: 
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where there are N modes to be included. The r-th 
mode has natural frequency nrω , damping ratio rξ , 
modal mass rm  and jrij φφ  e  being the mode shape 
coefficients (i for the input mode and j to the output 
mode). )(ωijH  is a complex number and is showed 
on a magnitude and phase graph [4]. The values 
obtained by the frequency response function are 
classified and used to identify the most important 
modes. 
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Figure 1: Finite Element Model of the studied 
              system 

 
 
3.1 Frequency Response Analysis 
Figures 2, 3 and 4 show the frequency response 
function analysis, with the torque stepper motor as 
the input and the translation of the beam as the 
output. The response frequency of the beam end on 
Y-axis and Z-axis is practically zero over the entire 
frequency range corresponding to a low rate of 
energy transfer from Z-axis to Y-axis. Thus, the 
analysis of the vibration modes is specified with 
respect to the X-axis, to the frequency 1,938 Hz 
which corresponds to the first mode of vibration of 
the flexible beam, having a high magnitude of 
response if compared to the whole frequency range. 
 
 

 
Figure 2 - Frequency response function with  
                 translation in X-axis. 

 
 

 
Figure 3 - Frequency response function with 
translation in Y-axis. 

 

 

 
Figure 4 - Frequency response function with 
                 translation in Z-axis. 

 
 
4 Selection of Target Modes 
Figure 2 summarizes the results of the FRF analysis 
indicating the dominant mode of vibration in the 
behavior of the flexible beam due to the application 
of a torque unit as an input. The largest contribution 
to the translation along the X-axis is the mode 
number 7 which corresponds to the first flexible 
mode of vibration system. This mode is chosen as 
the target mode to input shaping of the stepper 
motor in order to neutralize the first flexible mode 
of the beam in the X-axis To neutralize or reduce 
residual vibrations to acceptable levels, the shaper 
must have zeros on or near the poles unwanted 
dynamical system. The poles in the discrete domain 
are defined by complex conjugate pairs 
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where T is the discrete sampling period, niω are the 
natural frequencies, ξ  is damping ratio of the 
modes, diω  is the damped natural frequencies of the 
modes and i =1,2 and 3, 
 

21 ςω −=di  (3) 
 
 
5 Control strategy 
Can be obtained from an infinite number of transfer 
functions for the input shaper . However, the 
shaper should be able to: 
• eliminate unwanted vibration modes of the system, 
• provide robustness due to the uncertainties of the 
system, 
• must consider the effect of causality, 
• the need to minimize distortions on the input 
command, 
• the shaper commands  cannot exceed the limits of 
the stepper motor. 
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Once the the vibration flexible mode was rated with 
a frequency 1,938 Hz, two strategies of command 
sequence for the stepper motor were developed      
[9-11]. In the first strategy one zero was allocate on 
the pole of the system. The second control strategy, 
considers the uncertainties in the system parameters 
and two zeros were allocated near the pole. Nothing 
stops you from using parameter identification 
techniques [5,8]. For the natural frequency found 
and the damping ratio of 0.2%, the pole in the Z-
plane can be calculated directly from equation 2 [1], 
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The graph pole-zero of the system for the first 
control strategy is shown in Figure 5 for a sampling 
period T = 0.1718 seconds obtained from the 
analysis of the Figure 7.  
 

 
Figure 5 - Pole and zero in the Z-plane: first 
                control strategy 

 
The second control strategy considers variations or 
inaccuracies in the system parameters. Two zeros at 
frequencies 934,11 =f Hz and 942,12 =f Hz, are 
allocated near the pole frequency 938,13 =f Hz as 
shown in Figure 6. The sampling period is now T = 
0.129 seconds obtained from the analysis of the 
impulsive amplitudes plots, Figure 9. The pole in 
the Z-plane is calculated directly from equation (3). 

 
Figure 6 - Pole and zero in Z-plane second control 
               strategy 

 
6 Shaper Design Techniques to the 
First Control Strategy 
The shaper transfer function containing the poles 
and the zero at the origin of the z-plane for the first 
control strategy is: 
 

2
11 ))((

z
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where C is a normalization constant. 
Substituting the equation (4) into (6) and 
multiplying the numerator, the shaper transfer 
function takes the form: 
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where ia  is called impulsive amplitude. Using the 
trigonometric identity χχχ ii ee −+=)cos(2 the 
expressions for 1a  and 2a  takes the form: 
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12 Ra =  (8) 

 
The transfer function, equation (7), is mapped from 
z-plane into the s-plane by the relation  
 

sTez =  (9) 
 
Thus,  
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Dividing the numerator by the denominator of 
equation the (10) and applying the inverse Laplace 
Transform, the transfer function in the time domain 
is obtained. 
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7 Impulse Amplitudes as a Function of 
Time and Selection of the Sampling 
Period T. 
In Figure 7 each impulse amplitude is calculated 
from equation (8) to ia  with i = 1 and 2. The 
sampling period is determined from the graph of 
impulsive amplitude. Analysis of Figure 7 shows 
that the value of T which all amplitudes are positive 
is T = 0.1718 seconds. 

 
Figure 7: Function amplitude, first control  
               strategy 

 
Impulsive amplitudes are determined for the value 
of the sampling period founded. The constant C is 
used to normalize the sum of the amplitudes. Thus, 
the shaper pulse sequence for the first control 
strategy to counteract the obtained frequency of 
1,983 Hz is: 
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Figure 8 shows graphically this sequence of 
impulsive torque. 
 

 
Figure 8: Impulsive Amplitude, first control 
               strategy. 

 

 
8 Shaper Design Techniques to second 
control strategy 
The second control strategy considers variations or 
inaccuracies in the system parameters. In this case, 
two zeros at the frequencies 93411 ,=f Hz and 

94212 ,=f  Hz, are allocated near the pole 
frequency of 93813 ,=f Hz, as shown in Figure 6. 
The sampling period T = 0.129 seconds is obtained 
from the analysis graphic of the impulsive 
amplitudes, Figure 9. 
 

 
Figure 9: Function amplitude, second control 
               strategy 

 
The zeros of the shaper can be written as: 
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and the shaper transfer function is: 
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where C is a constant. 
 
Substituting the equation (13) into (14) and 
multiplying the numerator, the shaper transfer 
function takes the form: 
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where 1a , 2a , 3a e 4a are: 
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The transfer function, equation (15), is mapped from 
the z-plane into the s-plane by the relation  
 

sTez =  (17) 
 
Dividing the numerator by the denominator of 
equation (15) and applying inverse Laplace 
Transform, the transfer function in the time domain 
is obtained. 
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Graphically this sequence of impulsive torque is 
shown in Figure 10. 
 

 
Figura 10: Impulsive amplitude, second control 
                  strategy. 

 
 
9 Error Calculation 
In general the sequence of steps produced by the 
shaper is not an integer steps, being necessary the 
rounding to integer values to be implemented in a 
step motor.  
The total error produced by rounding the amplitude 
is defined as the sum of the magnitudes of the 
differences between the amplitudes and the rounded 
amplitudes  [4]. 
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10. Theoretical and Experimental 
Results 
The behavior of the flexible beam because the first 
control strategy in order to minimize the vibration of 
the flexible beam is shown in Figures 14 and 15. 
Figure 14 represents the theoretical behavior of the 
beam, while Figure 15 shows the results obtained 
experimentally. For the first control strategy, the 

stepper motor is driven at each sampling period T = 
0.1718 seconds. Each period T the motor performs 
four steps, three periods of sampling for the stepper 
motor rotate 10.8 degrees is required. When 
applying the first control strategy the oscillatory 
behavior of the flexible beam was well below the 
oscillatory behavior due to the first sequence drive 
the stepper motor. Experimental data also showed a 
reduction in oscillatory behavior of the flexible 
beam, when applying the first control strategy, as 
illustrated in Figures 16 and 17. The second control 
strategy considered possible inaccuracies and 
variations in system parameters due to non-
structural mass as bumper nuts and bolts . The 
second control strategy for residual vibrations , 
there was a significant reduction in the oscillatory 
behavior of the flexible beam, compared with the 
curve of the first sequence of actuation of the 
stepper motor. The allocation of another zero near 
the pole of the system , not completely neutralize 
the influence of the pole , however , meant that the 
amplitude of the flexible beam decays to lower 
values compared to the first sequence drive the 
stepper motor , which can be observed Figures 18 
and 19. The Figures 20 and 21 show the oscillatory 
behavior of the overlap of the flexible beam when 
applied to the second control strategy , the behavior 
of the flexible beam because the first sequence of 
actuation of the stepper motor , so as to theoretical 
results for the experimental results. 
 
 

 
Figure 11: theoretical curve continuous drive  
                  stepper motor. 
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Figure 12:Experimental continuous data drive 
                 stepper motor. 

 
 

 
Figure 13: Superposition of the experimental and 
                  theoretical curves, drive continuous 
 
 

 
Figure 14: First control strategy, theoretical  
                 curve. 

 
 

 
Figure 15: First control strategy experimental 
data. 

 
 

 
Figure 16: Theoretical curve, first control  
                strategy and drive continuous. 

 
 

 
Figure 17: Experimental data, first control 
                strategy and drive continuous. 

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

tempo ( s )

am
pl

itu
de

 ( 
m

 )

 

 

no control data

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

no control theoretical curve
no control data

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

control 1 theoretical curve

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

controle 1 data

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

no control theoretical curve
control 1 theoretical curve

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

no controle data
controle 1 data

WSEAS TRANSACTIONS on SYSTEMS Wantuir Ap. Freitas, André Fenili, Mário César Ricci

E-ISSN: 2224-2678 503 Issue 10, Volume 12, October 2013



 
Figure 18: Deflection of the beam, second control 
                strategy, experimental data. 

 
 

 
Figure 19 Deflection of the beam, second control 
                strategy, theoretical curve. 

 
 

 
Figure 20: Superposition of the theoretical curve 
               second control strategy and 
               continuous drive. 

 

 
Figure 21: Experimental data, second control 
                 strategy and experimental data. 

 
 

 
Figure 22: Deflection of the beam in the three 
                cases drive the stepper motor, the 
                theoretical curve. 

 
 

 
Figure 23: Deflection of the beam in the three 
                  Cases drive the stepper motor 
                  experimental data 

 
 
 

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

control 2 data

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

4 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

controle 2 theoretical curve

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

no control theoretical curve
controle 2 theoretical curve

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

no control data
control 2 data

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

no control theoretical curve
control 2 theoretical curve
control 1 theoretical curve

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6 x 10-5

time ( s )

am
pl

itu
de

 ( 
m

 )

 

 

no control data
control 2 data
control 1 data

WSEAS TRANSACTIONS on SYSTEMS Wantuir Ap. Freitas, André Fenili, Mário César Ricci

E-ISSN: 2224-2678 504 Issue 10, Volume 12, October 2013



The Figures 22 and 23 show the three cases of 
deflection (experimental and theoretical) due to the 
three sequences drives the stepper motor. The 
efficiency of the two design strategies vibration 
control can be observed. Can infer that knowing 
well the structure parameters for the calculation of 
natural frequencies, zeros can be allocated 
strategically about the poles of the system for 
maximum efficiency in reducing the amplitude of 
vibration of the flexible beam. However, when there 
are inaccuracies in the parameters of the system, the 
control action must be able to act to keep the 
displacement of the flexible beam at acceptable 
levels. 
 
 
11 Conclusions 
The vibration reduction structure using the input 
shaping technique, depends on proper 
identification of system parameters, so that the 
natural resonant frequency due to application of an 
external torque unit may be found by means of 
modal analysis. The use of the input shaping 
technique to reduce the vibration to acceptable 
levels in a structure that is externally excited by 
periodic pulses, presented good results in the 
neutralization of undesired vibration mode. The first 
control strategy, which consisted in allocating a zero 
on the pole of the system showed good efficiency in 
reducing vibration on the flexible beam. However, 
when inaccuracies were considered over the system 
parameters, two zeros were placed near the pole. 
The second control strategy of flexible beam, does 
not neutralize the influence of the pole at structure 
completely. 
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